Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
27 (2024), No. 4, pp. 773 - 780 http://dx.doi.org/10.17777/pjms2024.27.4.773

SUM AND DIFFERENCE SETS IN GENERALIZED
QUATERNION GROUPS

NEETU AND B R SHANKAR

ABSTRACT. Given a group G, we say that a set A C G has more sums than
differences (MSTD) if |A+ A| > |A— A| , has more differences than sums (MDTS)
if [A+A| < |A—A|, or is balanced if | A+ A| = |A— A|. A problem of recent interest
has been to understand the frequencies of these types of subsets. It is known that
for arbitrary finite groups G, almost all subsets A C G are balanced sets as |G| —
0. Recently for the generalized dihedral groups D = Z3 x G, it is conjectured
that there are more MSTD sets than MDTS sets. In this paper, we investigate
the behavior of the sum and difference sets of A C Q4,, where Q4, denotes
generalized quaternion groups and show that the generalized quaternion group
Qun has at least 22" subsets which are MSTD. We also analyze the expectation
for |[A — A| where A C Qun, proving an explicit formula for |A — A| when n is
prime.
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1. INTRODUCTION:
If A C Z, the sumset and difference set of A are defined respectively as,

A+A:={x €Z:x=ai+ agfor some ay,ay € A},

A—A:={x€Z:2=a —ayfor some aj,as € A}.

These elementary operations are fundamental in additive number theory. A natural
problem of recent interest has been to understand the relative sizes of the sum and
difference sets of a set of integers A.

Definition 1.1. If |A+ A| > |A — A|, we say A is a More Sums Than Differences
(MSTD) set or a sum-dominated set , while if |A+A| = |A—A| we say A is balanced,
and if |A+ A| < |A— A| then A is a More Differences Than Sums(MDTS) set or a
difference-dominated set.

Generally, we expect most sets to be MDTS since addition is commutative and
subtraction is not. Nevertheless, MSTD subsets of integers exist. Nathanson de-
tailed in [6] the history of the problem and attributed to John Conway the first
recorded example of an MSTD subset of integers, {0, 2,3,4,7,11,12,14}. Martin and
O’Bryant proved in [4] that the proportion of the 2" subsets A of {0,1,...,n — 1},
which are MSTD, is bounded below by a positive value for all n > 15. They proved
this by controlling the “fringe” elements of A, those close to 0 and n— 1, which have
the most influence over whether elements are missing from the sum and difference
sets. In [10], Zhao gave a deterministic algorithm to compute the proportion of
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MSTD subsets of {0,1,...,n — 1} as n goes to infinity and found that this propor-
tion is at least 4.28 x 1074

Much of the study of sum-dominant sets has concerned subsets of the integers. How-
ever, the phenomenon in finite abelian groups has received some attention, notably
in [3, 6, 9]. In [7], Nathanson showed that families of MSTD sets of integers could
be constructed from MSTD sets in finite abelian groups.

For finite groups, although the usual notation for the operation of the group is multi-
plication, we match the notation from previous work and define, for a subset A C G,
its sumset and difference set as

A+ A={aiaz: a1,a2 € A},

and
A—A= {alagl tap,ag € A}

Martin and O’Bryant showed in [4] that although MSTD subsets of the integers are
rare, they are a positive percentage of subsets of {0,1,...,n — 1}. MSTD sets in
finite groups are even rarer. In [5], Miller and Vissuet proved that as the size of
a finite group tends to infinity, the probability that a subset chosen uniformly at
random is sum-dominant tends to zero. Somewhat surprisingly, this is also true for
difference-dominant sets. This is very different from the integer case, where more
than 99.99% of all subsets are difference-dominant.

The reason integers behave differently from finite groups is that a subset of integers
contains fringe elements, as noted earlier.

Let S be a subset of I, :== {0,1,...,n} chosen uniformly at random. The elements

of S near 0 and n are the fringe elements. Interestingly the notion of nearness is
independent of n, and the reason is that almost all possible elements of I, + I,, and
I, — I, are realized respectively by S +S and S — S.
Thus, whether or not a set is sum-dominant is essentially controlled by the fringe
elements of S, as the ‘middle’ is filled with probability one, and the presence and
absence of fringe elements control the extremes. In a finite group, there are no fringe
elements since each element can be written as |G| different sums and differences, and
thus most elements appear in the sumset or difference set with high probability.

2. SOME IMPORTANT RESULTS

Theorem 2.1 ([5]). Let {G,} be a family of finite groups, not necessarily abelian,
such that |Gp| — oo. If S, is a uniformly chosen random subset of Gy, then the
probability P(S, + Sp, = Sp — Sp = Gn) — 1 as n — co. In other words, as the size
of the finite group grows, almost all subsets are balanced (with sumset and difference
set being equal to the entire group).

Miller and Vissuet, who studied the dihedral groups in [5], conjectured that for
n > 3, Do, has more MSTD subsets than MDTS subsets. Recently, Ascoli et al.
in [1] made progress towards this conjecture by partitioning subsets of Da,, by their
size. They conjectured the following.

Conjecture 2.2 ([1]). Let G be an abelian group with at least one element of order
3 or greater, and let D = Zs X G be the corresponding generalized dihedral group.
Then, there are more MSTD subsets of D than MDTS subsets of D.
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Theorem 2.3 ([1]). Let D = Zy x G be a generalized dihedral group of size 2n.
Let Sp, denote the collection of all subsets of D of size m, and let j denote the
number of elements in G with the order at most 2. If 6 < m < cj\/ﬁ, where
¢; = 1.3229/111 + 535, then there are more MSTD sets than MDTS sets in Sp .

In this paper, we will explore the sumset and difference set of the quaternion
group with the help of results based on the dihedral group.

3. QUATERNION GROUP

The quaternion group Qg (sometimes just denoted by Q) is a non-abelian group
of order eight, isomorphic to the eight-element subset {1,i,7,k, —1,—i,—j, —k} of
the quaternions under multiplication. It is given by the group presentation,

Qs = (1,0, 5,k | (-1)2 =1, i* = j> = k* = ijk = —1).

3.1. Generalised Quaternion Group.

Definition 3.1. The generalized quaternion group of order 4n is defined as
Qun = (a,b]a" =b*a®>" =b* =1,b"lab=a"1),
where n > 2.

With this definition, we can consider the specific example of the quaternion group
of order eight. The restrictions on generators for Qg are as follows:

Qs=(a,b|a®> =030 =1,b"1ab=0a"1).

We can write the eight elements in the following form: 1,a,a?,a3,b,ab, a®b, a®b.
Generally, one insists that n > 1 as the properties of generalized quaternions become
more uniform at this stage. However if n = 1 then one observes a = b2, so Q4 =
Z4. Dihedral group properties are strongly related to generalized quaternion group
properties because of their highly related presentations. We will see this in many of
our results.

The following result is well-known in [8].

Proposition 3.2 ([8]). The elements {1,a,a?,...,a*" "1 b,ab,a?y,...,a*""1b} rep-
resent the 4n distinct group elements of Qu4p.

Below, we list the sumsets and difference sets in the Quaternion Groups for
n=1and n=2.
o Ifn=1,Q4s={1,-1,i,—i}, all subsets of Q4 are balanced.
o If n =2 we have Qg = (—1,4,5,k | (-1)?> =1, i? = j> = k? = ijk = —1).
(1) If we take a subset of cardinality 1, then both sumset and difference set
have also cardinality 1, therefore balanced.
(2) We can write Qg as {1,a,a?, a,b,ab,a’b,a’b}. Let A = {a1,az2} be a
subset of Qg of cardinality 2 where a1, a2 € Qs.
A+ A = {da3,a1a2,a2a1,a3} and A — A = {1,&10,2_1,0,20,1_1}. Since
a? = a3 = —1 except a1 or ay belongs to {—1,1} and if either a; = +1
or ag = 1 then ajas = asa; therefore in every case |[A+ A| = |A— A|.
(3) Let A ={a1,as,as}, where a1, az,a3 € Qg then
A+ A= {d?, a1a2, a1as,azay, asas, a3, azai, azaz, a3} and
A—A={1, alag_l, ala:;l, agal_l, agagl, agal_l, agagl}, where a? = a3 =
a% = —1. If any two of ay, as, a3 are in {+i, +5, £k} and the other is &1,
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then a;s will commute with each other. So in every case, the cardinality
of A+ A is less than or equal to the cardinality of A — A, so we will not
get any MSTD set but if A = {i,j,1} then |[A+ Al =6and |[A—A| =7,
therefore, we have MDTS sets but no MSTD sets. In fact, we have 24
MDTS sets in Qg of cardinality 3.

(4) Let |A] = 4 and A = {a1,a2,a3,a4}. The number of such subsets is
(i) = 70. Consider the following cases.

— Case 1: Fixing two elements as 1 and —1, for the remaining two
elements, there are (g) = 15 choices; hence in total, there are 15
different sets of this type, and in each case, we found |A — A| >
|A+ A

— Case 2 : Again by fixing two elements as ¢ and —i, the remaining
two elements can’t be 1 and —1 at the same time. So, in this case,
there are 14 different sets, distinct from sets obtained in case 1
and here also |[A — A| > |A + A|; therefore, no MSTD sets.

— Case 3 : Now if we choose two elements as j and —j, then the
remaining two elements can’t be {1,—1} or {¢, —i} at the same
time, thus there will be 13 different sets in this case, which are
distinct from sets obtained in case 1 and case 2 and here also
|A—A| > |A+ A

— Case 4: Similarly, by fixing two elements as k and —k, there are
12 different sets distinct from the sets found in cases 1, 2, and 3.
Here also |[A — A| > |A+ A|.

— Case 5 : If A is such that none of a;s are inverse of each other
then |A — A| =7 and |A 4+ A| = 8 and these type of sets are total
16 in number. Therefore we have total of 16 subsets of g, which
are MSTD.

(5) If |A| > 5, then it is a balanced set. Let A C Qg and if {i,—i} ¢ A then
if {j,—j} € A then either k or —k has to be in A which will generate
whole set Qs and if {k, —k} € A then either j or —j has to be in A
which will generate whole set Qg. The same holds when {j,—j} ¢ A
and {k,—k} ¢ A.

Proposition 3.3. Let n > 2 be an integer. Let Ayp o denote the collection of subsets
of Qun of size 2. Then Ayp o has strictly more MSTD sets than MDTS sets.

Proof. Let A be a subset of Q4 of cardinality 2. There are three possible cases to
consider for A.

Case 1 : If A contains a’ and o/ where 0 < i,j < 2n — 1 then A~! = {a®*~% a?"J}.
Here A+ A = {a®,a'7,a?}. However, A— A = {1,a?"+=7 ?"*+i=}. Note
that ¢ # j. Both the sumset and the difference set have 3 elements except in
one special case. Suppose that a?* = a?/. Then, we have that a’a™7 = a7’
which implies a7 = @?~*. Thus, when A contains only a’ and a?, then A is
always balanced.

Case 2 : If A contains {a’, a’b}, then A~! = {a®"~% a"+ib} .

Here A+ A = {a%,a"7b,a/~'b,a"}, and A — A = {1,a"7"b, a"*b}. When
a? # a™ and a"tb # a7~ , A will be MSTD. In the case where a® = a”
then A4+ A = {a”,a2%7b,a/"2b} and A — A = {1,a2"7+"b,a277b} and in



Case 3

Sum and difference sets in generalized quaternion groups 77

other case if a™7b = a/~h then A + A = {1,a""b,a’"b} and A — A =
{1,a’b,a™*7b}. In both cases, we find that A is a balanced set.
: If A = {a’b,a’b}, for some i and j between 0 and 2n — 1, then A~! =
{a"*b, a"*Ib}. Here A+ A = {a"™,a"*" 7, a"~%} and
A—A={1,a"7,a/7"}, again A is a balanced set.

O

Proposition 3.4. Let 2 < n < 4, and let Asy 3 denote the collection of subsets of
Qun of size 3. Then Aan 3 has strictly more MDTS sets than MSTD sets.

Proof. Let A be subset of Q4 of cardinality 3. o
Possibilities for cardinality 3 : {d’,a?,a*}, {a’,a?,a*b}, {a*,a’b, ab},
{a’b,a’b,a*b}, where 0 < i,j,k < 2n — 1.

Case 1

Case 2

Case 3

Case 4

: If A= {d’,a’,a"} where i # j # k, then
A+ A={d* ", 'tk ¥ a?, ajJrk},
and
A—A={1,a"7 a7 a7 a7, aF71 oF I}

implies that |[A — A| > |A+ A.
. If A= {d’,a’,a"b} where i # j, then

A+ A= {aQi,aiH,aHkh a2j,aj+kb, akiib, akrfjb’ an}7
and

A— A= {1,ai7, q"Hitkp @I =i qrtithy gltiy gktipy,

A is MSTD precisely when either a*t*b # a*~%b or, a?*t*b # a*~7b or both
hold. This could fail to occur if only if ¢ = 0 or ¢ = n and for j, this could
fail to occur if and only if j = 0 or j = n. The possibility to get MSTD sets
is when j —i = n and i 4+ j # n. In such cases, we get a few MSTD sets;
the rest are either MDTS or balanced sets. As a result, we notice that for
n = 2,3, or 4, there are more MDTS sets than MSTD sets. However, for
n > 5, the situation becomes more complex, making it difficult to determine
the behavior of the subsets in this case.
: If A= {ad’,a’b,a"b} where j # k, then
A+ A= {a¥, a*Ib,a*b, a7 =b, a", a7k gk, gnHhI),
and
A—A=A{1, AT, q iRy, gI Tk gty gk akH}.
If n4+ 7 # 2i or 2i # n+ k — j, then we can get a few sets that are MSTD,
but these sets are very rare. Most sets will be either balanced or MDTS.
: If A= {a’b,a’b,a"b} where i # j # k, then
A+ A= {an’an—o—i—j’ an+i—k’ an+j—i7an+j—k’ an+k—i’ an+k—j}’
and
A—A={1,a"7 a7 a7 a7 a*t b},
If in any case, |A + A] is reducing that will reduce the |A + A| also, this
implies that [A — A| = |A+ A].

Therefore, from all the cases above, we can conclude that for n = 2,3, or 4, there
are more MDTS sets than MSTD sets. O
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For n > 5, we conjecture that the number of sum-dominant subsets of cardinality
three in Q4, is greater than the number of difference-dominant subsets of the same
cardinality. Thus, we see that the behavior of sum-dominant sets in quaternion
groups is different from dihedral groups.

Lemma 3.5. Let Q4 be a generalized quaternion group of size 4n, and let A C Qy4p,
with |A| = 2n, A= {1,a,a?,...,a" %, b,ab,...,a" b} then A is an MSTD set.

Proof. Let A={1,a,a?,...,a" 1 b,ab,...,a” b} then

A7t ={1,a?""1 a® 2 . a"T amh, e, . L a? D)

Here, A+ A = {1,a,a?,a3,...,a®>" "1 b,ab,ab,...,a>" b} = Qun = |A+ A| =
4n. To prove: |A — A| = 4n — 1, we shall show a” ¢ A — A. Suppose a” € A — A
then there is some i, 0 < i < 2n — 1 such that a” = a’ba’b € A — A but the only
common element in A and A1 is 1. Hence a™ ¢ A — A. O

Theorem 3.6. Q4. has at least 22" subsets which are MSTD where n > 2.

Proof. For n = 2, Qg has 2% subsets, which are MSTD. In Qg, we know that
A={l,a,a% ...,a" L b,ab,...,a" b} is an MSTD set by above lemma. Replacing
a with its inverse will give us a new set, and that set will also be an MSTD. Every
element of A can be replaced by its inverses, and 1 can be replaced by a™, which
will give new MSTD sets. By this process, we get a total of (21") new MSTD
sets. Similarly, we can choose two distinct elements from A in (22") ways, and by
replacing them with their respective inverses and 1 by a”™ we get new MSTD sets
and we can proceed with choosing more elements up to 2n. Hence we will get total
(261) + (21n) + (2;) + (2;) +eeet (22711) + (g") = 227 different sets which are MSTD. O

n

Theorem 3.7. Let A C Qu, and |A| > 2n then |[A+ A| = |A — A| = |Qun]-

Proof. Let g € Q4,, and assume it is not in A + A.

(1) Take any a € A then ga—! ¢ A since g = ga~'a would be in A + A.

(2) The map ¢ : Qun — Qun, a — ga~! is bijective so we get that |p(A)| =

|A| > 2n.

But by (1), we see that ¢(A4) N A = 0, this is a contradiction since ¢(A) U A is a
disjoint union in Qupn. So, |$(A) U A| > 2n + 2n = 4n, which is contradiction to
|Q4n] = 4n. So our assumption that ¢ is not in A + A is false and Qq, C A + A.
Therefore |Q4n| = |A + A|. Similarly we can prove that |Qup| = |A — Al O

Note that by Proposition 3.4, we know that MDTS sets are more than MSTD sets
in Qg of size 3 for n < 4. A similar analysis can be done for subsets of cardinality
4, and one can show that there are more MDTS sets. This leads us to the following
conjecture.

Conjecture 3.8. Let n > 2 be an integer, and let Ag,, m denote the collection of
all subsets of Qupn of size m. For m < 2n, Ag,, m has at least as many MDTS sets
as MSTD sets.

4. EXPECTED S1ZE OF SUM AND DIFFERENCE SETS

We may write Q4, as
(Z/(2n) x Z/(4))/{(n,2))
for n > 2, where the group law on (Z/(2n) x Z/(4)) is given by (a,b)(c,d) =
(a+ (—1)%c,b+d) and (n,?2) is in center of Z/(2n) x Z/(4) with order 2. It is called
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both the generalized quaternion group of order 4n and the dicyclic group of order
4n. Throughout this section, we use Ay, m to denote the set of subsets of size m in
Q4n~

Recently Ascoli et al. in [1] tried to prove that Say, m, has more MSTD sets than
MDTS sets for values of m greater in order of magnitude than /n with the help
of the method of collision analysis, where S, ., denotes the set of subsets of size
m in Ds,. The intuition for this comes from the fact that the sum and difference
sets for A C Do, should very roughly have size to be of the order of magnitude
of A%2. Hence, one would expect to usually have A+ A = A — A = Dy, when m
is much greater than y/n. The analysis for relative numbers of MSTD and MDTS
sets in Sop, m, for these larger values of m should, therefore be based on counting the
number of missed sums and differences in Ds,, in direct analogy with the case of
slow decay for the integers in [2].

They have taken the first steps toward such an analysis by proving the following
special case.

Theorem 4.1 ([1]). Ifn is prime, and A is chosen uniformly at random from Sap m.,
then the expected size of |A — A|,
nm2™ (") +2n(n —1)(" "7 )

m(5)

E[|A— Al = 2n —
m—1 n+k —m— 1)(n k— 1)

nflzmk1 k—1
2n )

We have used the lemmas given in [1] and apphed them to generahzed quaternion
groups and found the expected value of difference sets in Q4.

Theorem 4.2. If n is prime, and A is chosen uniformly at random from Ay m,
then

n2m () ant(2n - 1)

_ _ m
A Al @
DS e D () 5 (ol ) ()
k=0L (k1 ,kp)ez2 ks (t1,t2)€Z2 (m - tl)(m N tz)
k1+ko=k t1+to=k
Proof. The proof is similar to that of Theorem 4.1, given in [1]. O

5. CONCLUSION

We have shown that Generalised Quaternion groups behave differently than Gen-
eralised Dihedral Groups, though they have their highly related presentations. A
natural question to ask is what are the total number of MSTD or MDTS sets in Q4.
An immediate future direction of research is to prove the Conjecture 3.8. A possible
approach to prove this conjecture is to construct an injective map from MDTS sets
to MSTD sets in the group. Such an approach has proven to be difficult but has the
potential advantage of working for both large and small values of m.
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